Enrollment No: ____

Exam Seat No:_____

C.U.SHAH UNIVERSITY Summer Examination-2018

_

Subject Name: Computer Oriented Mathematical Reasoning

Subject Code: 4CS02	IMR1	Branch: B.Sc.I.T.		
Semester: 2 Date: 25/04/2018		Time: 10:30 To 01:30	Marks: 70	

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1	Attempt the following questions:	(14)
a)	Give differences between Least cost method and north west corner method.	(02)
b)	Iterative methods are fast than direct methods. – True or False?	(01)
c)	Define: Interpolation	(02)
d)	One root of the given equation $x^2 - 3x + 1 = 0$ is between a) 0 and 1 b) 1 and 2 c) -1 and 0 d) none of these	(01)
e)	Write iterative formula for Secant method.	(02)
f)	Define: Backward Difference	(02)
h)	Write the formula of Gaussian quadrature for n=2.	(02)
i)	Define: Optimum solution	(02)

Attempt any four questions from Q-2 to Q-8

Q-2	Attempt all questions:	(14)
a)	Find the roots of equation $x^3 - 3x - 1 = 0$ by using False position method correct up to three decimal places.	(07)
b)	Find the root of the equation $x^3 - 6x + 4 = 0$ by Newton-Raphson method up to three decimal places.	(07)
Q-3	Attempt all questions:	(14)
a)	Solve the system of equation by Cause elimination method	
	Solve the system of equation by Gauss-eminiation method	(07)
	7x + y - 2z = 0; x + 5y - 4z = 0; 3x - 2y + z = 0; 2x - 7y + 5z = 0	(07)

Page 1 of 3

Q-4 Attempt all questions:

a) Find the initial feasible solution of the following transportation problem by (07) Vogel's approximation method.

			Destinations	5		
e B		1	2	3	4	a_i
ILC	1	21	16	25	13] 11
Sou	2	17	18	14	23	13
•1	3	32	27	18	41	19
	b _j	6	10	12	15	43

b) Find the initial feasible solution of the following transportation problem by (07) North West Corner Method.

	D_1	D_2	D_3	D_4	D ₅	D ₆	Supply
S ₁	9	12	9	8	4	3	5
<i>S</i> ₂	7	3	6	8	9	4	8
<i>S</i> 3	4	5	6	8	10	14	6
S_4	7	3	5	7	10	9	7
S ₅	2	3	8	10	2	4	3
Demand	3	4	5	7	6	4	,

Q-5 Attempt all questions:

a) Compute f(0.56) by using Newton's forward difference formula for the (07) following table:

x	0.5	0.6	0.7	0.8
f(x)	1.127625	1.185465	1.255169	1.337435

b) Find the value of f(10) by using Lagrange interpolation formula from the (07) following data

x		5	6	9	11
f(x))	12	13	14	16

Q-6 Attempt all questions:

a) Find the root of the equation $x^3 - x + 1 = 0$ by bisection method up to three (07) decimal places.

Page 2 of 3

(14)

(14)

(14)

b) Find the initial feasible solution of the following transportation problem by (07) Least cost method.

	Distribution Centres				
Sources	D ₁	\mathbf{D}_2	D ₃	D ₄	Supply
S ₁	2	3	11	7	6
S ₂	1	0	6	1	1
S ₃	5	8	15	9	10
Requirements	7	5	3	2	17

Q-7 Attempt all questions:

a) Evaluate $\int_{0}^{\infty} e^{x} dx$ by trapezoidal rule with n = 10. (07)

b) Evaluate
$$\int_{0}^{3} \frac{dx}{1+x}$$
 by using Simpson's $\frac{3}{8}$ rule taking $h = 0.5$. (07)

Q-8 Attempt all questions:

(14)

(14)

- **a)** Evaluate $\int_{4}^{5.2} \log_e x \, dx$ by Simpson's $\frac{1}{3}$ rule. (07)
- **b**) Compute y(5) by using Newton's forward difference formula for the following (07) table

x	4	6	8	10
у	1	3	8	16

